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State Property Systems and Orthogonality
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The structure of a state property system was introduced to formalize in a complete way
the operational content of the Geneva–Brussels approach to the foundations of quantum
mechanics (Aerts, D. International Journal of Theoretical Physics, 38, 289–358, 1999;
Aerts, D. in Quantum Mechanics and the Nature of Reality, Kluwer Academic; Aerts,
D., Colebunders, E., van der Voorde, A., and van Steirteghem, B. International Journal
of Theoretical Physics, 38, 359–385, 1999), and the category of state property systems
was proven to be equivalent to the category of closure spaces (Aerts, D., Colebunders,
E., van der Voorde, A., and van Steirteghem, B., International Journal of Theoretical
Physics, 38, 359–385, 1999; Aerts, D., Colebunders, E., van der Voorde, A., and van
Steirteghem, B., The construct of closure spaces as the amnestic modification of the
physical theory of state property systems, Applied Categorical Structures, in press).
The first axioms of standard quantum axiomatics (state determination and atomisticity)
have been shown to be equivalent to the T0 and T1 axioms of closure spaces (van
Steirteghem, B., International Journal of Theoretical Physics, 39, 955, 2000; van der
Voorde, A., International Journal of Theoretical Physics, 39, 947–953, 2000; van der
Voorde, A., Separation Axioms in Extension Theory for Closure Spaces and Their
Relevance to State Property Systems, Doctoral Thesis, Brussels Free University, 2001),
and classical properties to correspond to clopen sets, leading to a decomposition theorem
into classical and purely nonclassical components for a general state property system
(Aerts, D., van der Voorde, A., and Deses, D., Journal of Electrical Engineering,
52, 18–21, 2001; Aerts, D., van der Voorde, A., and Deses, D. International Journal
of Theoretical Physics; Aerts, D. and Deses, D., Probing the Structure of Quantum
Mechanics: Nonlinearity, Nonlocality, Computation, and Axiomatics, World Scientific,
Singapore, 2002). The concept of orthogonality, very important for quantum axiomatics,
had however not yet been introduced within the formal scheme of the state property
system. In this paper we introduce orthogonality in an operational way, and define ortho
state property systems. Birkhoff’s well known biorthogonal construction gives rise to
an orthoclosure and we study the relation between this orthoclosure and the operational
orthogonality that we introduced.
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1. INTRODUCTION

Within the Geneva–Brussels approach to the Foundations of Quantum
Mechanics (Aerts, 1981, 1982, 1983; Piron, 1976, 1989, 1990) the basic oper-
ational concept to construct the theory is that of a “test” (in some articles also
called “yes/no experiment,” “question,” or “operational project”). For a physical
entity S one considers the set of all relevant tests Q, and denotes tests by means
of symbols α, β, γ, . . . ∈ Q. The basic ontological concept is that of state of the
physical entity S, and the set of all relevant states is denoted by �, while indi-
vidual states are denoted by symbols p, q, r, . . . ∈ �. A basic structural law on
Q is the following: “if the entity S is in a state p ∈ �, such that the outcome
‘yes’ is certain for α, then the outcome ‘yes’ is certain for β.” If this is satisfied
we say that α implies β and denote α < β. This law defines a preorder relation
on Q, which induces an equivalence relation on Q. A property of the entity S

is then introduced as the equivalence class of tests that test this property, the set
of all relevant properties is denoted by L and individual properties by symbols
a, b, c, . . . ∈ L. Two operations are introduced operationally on Q. For an arbi-
trary test α ∈ Q the “inverse test” α̃ is introduced, which is the test that consists
of performing α and exchanging the role of “yes” and “no,” and it is demanded
that :̃ Q → Q is defined on all Q, and obviously ˜̃α = α. For an arbitrary col-
lection {αi} of tests the “product test” �iαi is defined as the test that consists
of choosing one of the αi and performing the chosen test and interpreting the
outcome thus obtained as outcome of �iαi . It is also demanded that Q is closed
for the product operation on tests, and as a consequence it can be proven that the
set of properties L is a complete lattice, for the trace on L of the preorder relation
on Q, which is a “partial order relation” on L, denoted <, with the meaning:
a < b iff whenever the state of the entity S is such that a is actual, then also b

is actual. The infimum for a collection of properties {ai}, ai ∈ L, is denoted ∧iai

and it is the equivalence class of the product test �iαi , where for each i the test αi

tests the property ai , hence the physical meaning of the infimum property is the
conjunction.

More recently almost (and we come to this immediately) the whole scheme
that is obtained as such in a purely operational way was formalized by introducing
the structure of a state property system (Aerts, 1999a,b; Aerts et al., 1999).

Definition 1. (State Property System). A triple (�,L, ξ ) is called a state property
system if � is a set, L is a complete lattice, and ξ : � → P(L) is a function such
that for p ∈ �, 0̄ the minimal element of L and (ai)i ∈ L, we have 0̄ �∈ ξ (p)
(SPS1) and ai ∈ ξ (P ),∀i implies ∧iai ∈ ξ (p) (SPS2). Moreover for a, b ∈ L we
have that a < b if and only if for every r ∈ �:a ∈ ξ (r) implies b ∈ ξ (r) (SPS3).

It is by the introduction of the function ξ that the state property system
formalizes the operational content of the Geneva–Brussels approach. The physical
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meaning of ξ (p) for an arbitrary state p ∈ � of the physical entity S, is that ξ (p) is
the set of all properties that are actual when S is in state p. This makes it clear why
(SPS1), (SPS2), and (SPS3) have to be satisfied. Indeed, (SPS1) expresses that 0,
the minimal property, is the property that is never actual, for example the property
“this entity S is not there.” And (SPS2) expresses that the infimum of properties
that are actual in a state is also an actual property, which has to be so because of
the physical meaning of conjunction for the infimum. And (SPS3) expresses the
physical law: a < b iff whenever the state of the entity S is such that a is actual,
then also b is actual.

We mentioned already that the state property system only manages to cap-
ture “almost” all of the operational structure. Indeed the structure of the inverse
operation˜: Q → Q, was not captured within the formal structure of the state
property system. The reason why there is a fundamental problem here is because
the inverse on the set of tests does not transpose to an operation on the set of
properties by means of the quotient. This is because for two equivalent tests
α, β ∈ Q we do not in general have that the inverse tests α̃ and β̃ are equivalent.
The problem was known in the early approaches (Aerts, 1981, 1982, 1983; Piron,
1976, 1989, 1990), and partly solved by introducing an orthogonality relation,
translating part of the structure of the inverse on Q to the structure of an orthog-
onality relation on �: p, q ∈ �, then p ⊥ q iff there exists a test α ∈ Q such
that α gives with certainty “yes” if S is in state p and α̃ gives with certainty
“yes” if S is in state q. However the structure of the inverse was in this way only
transferred indirectly to a structure on L, by demanding that two properties a and
b are orthogonal iff all states that make a actual are orthogonal to all states that
make b actual. A lot of the operational structure of˜: Q → Q was lost in this
way.

In this article we introduce the structure of the inverse within the more
complete scheme of the state property system and this will lead us to define
an ortho state property system. We also want to study this “inverse” structure
for the closure space that is connected through a categorical equivalence to
the state property system, an equivalence of categories that has shown to be
very fruitful for many other fundamental aspects of quantum axiomatics (Aerts
et al., 1999a,b, in press-a,b; Aerts and Deses, 2002; van der Voorde, 2000, 2001;
van Steirteghem, 2000). We also introduce two “weakest” ortho axioms to make
the lattice of properties of our ortho state property system to be equipped with
an orthocomplementation, a necessary structure for quantum axiomatics (Aerts,
1981, 1982, 1983; Piron, 1976, 1989, 1990). Let us recall some definitions and a
theorem.

Definition 2. (Cartan Map). If (�,L, ξ ) is a state property system then its Cartan
map is the mapping κ : L → P(�) defined by κ(a) = {p ∈ � | a ∈ ξ (p)}. This
map has the property that κ(∧iai) = ∩iκ(ai).
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Definition 3. (Closure Space). A closure space (�, C) consists of a set � and a
family of subsets C ⊆ P(X), which are called closed subsets, such that ∅ ∈ C and
for (Fi)i ∈ C we have ∩iFi ∈ C.

Theorem 1. If (�,L, ξ ) is a state property system then (�, κ(L)) is a closure
space, called the eigenclosure of (�,L, ξ ). Conversely, if (�, C) is a closure space
then (�, C, ξ̄ ) is a state property system. Here C is the complete lattice of closed
sets, ordered by inclusion and ξ̄ : � → P(C) : p �→ {A ∈ C|p ∈ A}.

For a proof of this theorem we refer to Aerts et al. (1999).

2. ORTHO STATE PROPERTY SYSTEMS

We are now ready to introduce the following concept of orthogonality:

Definition 4. (Ortho State Property System). An ortho state property system
(�,L, ξ, ⊥̂) is a state property system (�,L, ξ ) and a relation ⊥̂ on L such that:

a⊥̂b ⇒ b⊥̂a ai⊥̂bj ∀i, j ⇒ ∧iai⊥̂ ∧j bj

a⊥̂b ⇒ a ∧ b = 0̄ 0̄⊥̂a ∀a ∈ L
The definition of an ortho state property system is inspired by the following: if a

and b are properties and there exists a test α such that α tests a and α̃ tests b, then
the requirements of definition 4. follow. A trivial example of a ⊥̂ relation is where
we would state a⊥̂b ⇔ a ∧ b = 0̄. From now on we will assume to work with an
ortho state property system (�,L, ξ, ⊥̂), unless explicitly stated otherwise. We
can define the traditional orthogonality relation on the set of states by means of
this relation ⊥̂.

Proposition 1. ⊥̂ induces an orthogonality relation (antireflexive, symmetric) ⊥
on the set of states � in the following way: p ⊥ q if and only if there are a, b ∈ L
such that a⊥̂b and a ∈ ξ (p) and b ∈ ξ (q).

Now that we have an orthogonality relation on �, it generates the orthoclosure
(�, Corth) by means of Birkhof’s biorthogonal construction:Corth = {A⊥⊥|A ⊂ �},
where A⊥ = {p ∈ �|∀q ∈ A : p ⊥ q}. Conversely an orthogonality relation on a
state property system induced a ⊥̂-relation on its property lattice, as is shown in
the following proposition.

Proposition 2. If, for a state property system (�,L, ξ ) with an orthogonality
relation ⊥ on its states, we define a⊥̂b if and only if p ⊥ q ∀ p, q ∈ � such that
a ∈ ξ (p) and b ∈ ξ (q). Then (�,L, ξ, ⊥̂) is an ortho state property system.
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Proof: Symmetry of ⊥̂ is evident. The fact that ⊥ is antireflexive implies that
whenever a⊥̂b, we get that a ∧ b = 0̄. Since 0̄ �∈ ξ (p) for any p ∈ � we have
that p ⊥ q ∀ p, q ∈ � such that 0̄ ∈ ξ (p) and a ∈ ξ (q) is always true, hence 0̄⊥̂a

for any a ∈ L. Finally ∀i, jp ⊥ q ∀ p, q ∈ � such that ai ∈ ξ (p) and bj ∈ ξ (q)
implies p ⊥ q ∀ p, q ∈ � such that ∧iai ∈ ξ (p) and ∧j b ∈ ξ (q) hence we get
ai⊥̂bj ∀i, j ⇒ ∧iai⊥̂ ∧j bj . �

3. ORTHOCOUPLES AND ORTHOPROPERTIES

There is another type of orthogonality structure that we can introduce.

Definition 5. (Orthocouple, Orthoproperty). If a, b ∈ L satisfy

b ∈ ξ (p) ⇔ p ⊥ q ∀ q such that a ∈ ξ (q)

a ∈ ξ (q) ⇔ q ⊥ p ∀ p such that b ∈ ξ (p)

they form an orthocouple. From this it follows that if a, b and a, c are orthocouples,
then b = c. A property a ∈ L which is member of an orthocouple a, b is called
an orthoproperty. For an orthoproperty a ∈ L we denote the unique property that
is defined by it being member of an orthocouple by a′.

Proposition 3. If a, b ∈ L are orthoproperties we have (a′)′ = a and a < b

implies b′ < a′.

Proof: We have a ∈ ξ (p) ⇔ p ⊥ q ∀q such that a′ ∈ ξ (q) ⇔ (a′)′ ∈ ξ (p). This
proves that (a′)′ = a. Suppose that a < b and consider b′ ∈ ξ (p). Then p ⊥ q ∀q

such that b ∈ ξ (q). Since a < b we also have p ⊥ q ∀q such that a ∈ ξ (q). Hence
a′ ∈ ξ (p). This proves that b′ < a′. �

The relation between the Cartan map κ and the ⊥-relation is described as in
the next propositions.

Proposition 4. For an orthoproperty a ∈ L we have κ(a′) = κ(a)⊥ and κ(a) =
κ(a)⊥⊥.

Proof: We have p ∈ κ(a′) ⇔ a′ ∈ ξ (p) ⇔ p ⊥ q ∀q such that a ∈ ξ (q) ⇔
p ⊥ q ∀q such that q ∈ κ(a) ⇔ p ∈ κ(a)⊥. We remark that for A ⊂ � we
have A⊥⊥⊥ = A⊥. From this it follows that κ(a) = κ(a′)⊥. Hence κ(a)⊥⊥ =
κ(a′)⊥⊥⊥ = κ(a′)⊥ = κ(a). �
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Proposition 5. A property a ∈ L is an orthoproperty iff κ(a) = κ(a)⊥⊥ and there
exists b ∈ L such that κ(b) = κ(a)⊥ or equivalently iff κ(a) ∈ Corth and there exists
b ∈ L such that κ(b) = κ(a)⊥. In this case b = a′.

4. THE ORTHO AXIOMS

This gives us all the material that we need to put forward the first ortho axiom
for an ortho state property system (�,L, ξ, ⊥̂).

Axiom 1. (AO1) Axiom Ortho 1 is satisfied if there exists a generating set T of
orthoproperties for L, i.e., L = {∧iai |ai ∈ T }.

The axiom to prolongate the orthocomplementation to the whole of L can also
easily be put forward now.

Axiom 2. (AO2) Axiom Ortho 2 is satisfied if for p ∈ � there exists a property
ap ∈ L such that ap ∈ ξ (q) ⇔ q ⊥ p. This implies the uniqueness of ap.

Definition 6. (Orthocomplementation). Suppose that we have a state property
system (�,L, ξ ). A function ′: L → L, such that for a, b ∈ we have:

(a′)′ = a a ∧ a′ = 0̄

a < b ⇒ b′ < a′ a ∨ a′ = 1̄

is called an orthocomplementation of L.

Theorem 2. We have:

(A) If an ortho state property system (�,L, ξ, ⊥̂) satisfies AO1 and AO2 then it
induces an orthocomplementation ′ : L → L on the state property system
(�,L, ξ ). Here a′ is defined as the unique member of L for which a, a′

forms an orthocouple in (�,L, ξ, ⊥̂).
(B) If a state property system (�,L, ξ ) has an orthocomplementation ′ : L →

L then (�,L, ξ, ⊥̂) is an ortho state property system satisfying AO1 and
AO2, where ⊥̂ is defined by a⊥̂b ⇔ b < a′.

Proof: (A): We prove that for a ∈ L there exists a unique property a′ such that:
a′ ∈ ξ (p) ⇔ p ⊥ q ∀q ∈ � such that a ∈ ξ (q). The fact that for each p ∈ � AO2
gives us a unique ap ∈ L, allows us to define a′ = ∧a∈ξ (p)ap. Suppose that a′ ∈
ξ (r) for some r ∈ � then obviously for a p ∈ � such that a ∈ ξ (p) we get a′ < ap.
Hence ap ∈ ξ (r), for each p ∈ � such that a ∈ ξ (p). Therefore r ⊥ p for each
p ∈ � such that a ∈ ξ (p). Conversely, if r ⊥ q for every q ∈ � such that a ∈ ξ (q)
we know from AO2 that aq ∈ ξ (r) for every such q. Hence a′ = ∧a∈ξ (q)aq ∈ ξ (r).
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By the last two results we have that our a′ is the same as a′ defined by Definition 5.
There remains to prove that ′ is indeed an orthocomplementation. For a ∈ L we
know that there exists orthoproperties ai such that a = ∧iai , for which (a′

i)
′ = ai .

Thus (a′)′ ∈ ξ (r) which is equivalent to

r ⊥ q for every q ∈ � such that a′ ∈ ξ (q)

⇔ r ⊥ q for every q ∈ � such that q ⊥ p for every p ∈ � such that a ∈ ξ (p)

⇔ ∀i : r ⊥ q for every q ∈ � such that q ⊥ p for every p ∈ � such that

ai ∈ ξ (p)

⇔ ∀i : r ⊥ q for every q ∈ � such that a′
i ∈ ξ (q)

⇔ ∀i : (a′
i)

′ = ai ∈ ξ (r)

⇔ a ∈ ξ (r)

Hence (a′)′ = a. If a < b and b′ ∈ ξ (r) we have that r ⊥ q for every q ∈ �

such that b ∈ ξ (q), but a ∈ ξ (q) implies b ∈ ξ (q) hence r ⊥ q for every q ∈ �

such that a ∈ ξ (q), so a′ ∈ ξ (r) and thus b′ < a′. Finally, if 0̄ �= a ∧ a′ ∈ ξ (r) then
a, a′ ∈ ξ (r) but this implies r ⊥ r which is impossible, so a ∧ a′ = 0̄. Analogously
a ∨ a′ = 1̄.

(B): We only give the proof of the last condition on ⊥̂, the others are
easy verifications. Let ai⊥̂bj for every i, j , then by definition of ⊥̂ we get
bj < a′

i , so bj < ∧ia
′
i . We also have ∧iai < ai , hence a′

i < (∧iai)′ so that
∧ia

′
i < (∧iai)′. Therefore bj < (∧iai)′ and thus ∧j bj < (∧iai)′. Finally we con-

clude that ∧iai⊥̂ ∧j bj . In order to prove AO1 we will prove that every pair a, a′

is an orthocouple, i.e.:

a ∈ ξ (q) ⇔ q ⊥ p ∀ p such that a′ ∈ ξ (p)
a′ ∈ ξ (p) ⇔ p ⊥ q ∀ q such that a ∈ ξ (q)

where ⊥ is given by p ⊥ q ⇔ ∃a, b ∈ L : a⊥̂b, a ∈ ξ (p), b ∈ ξ (q). We prove the
first statement, the second is completely analogous. Let a ∈ ξ (q) and p such that
a′ ∈ ξ (p) then obviously there a⊥̂a′, hence p ⊥ q. Conversely, suppose p ⊥ q

for each p such that a′ ∈ ξ (p). So for such a p there are ã ∈ ξ (q), b̃ ∈ ξ (p) for
which ã⊥̂b̃, so b̃ < ã′. Since b̃ ∈ ξ (p), we know that ã′ ∈ ξ (p). We have:

∀p such that a′ ∈ ξ (p) : ∃ãp ∈ ξ (q) : ã′
p ∈ ξ (p)

We now define c = ∧a′∈ξ (p)ãp. Since c < ãp, we have that ã′
p < c′, hence

c′ ∈ ξ (p), for each p such that a′ ∈ ξ (p). This means that a′ < c′. Using the
orthocomplementation we get c < a, but since c ∈ ξ (q), a ∈ ξ (q). Hence AO1
holds. From the above we also see that the orthocomplementation induced by the
ortho state property system (�,L, ξ, ⊥̂), is the same as the given one, since a, a′
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always form an orthocouple. In order to prove AO2 we choose an p ∈ � and con-
sider ap = (∧ξ (p))′. If ap ∈ ξ (q) then for ã = ∧ξ (p) ∈ ξ (p) and b̃ = ap ∈ ξ (q)
we have that b̃ < ã′, hence ã⊥̂b̃ and thus p ⊥ q. Conversely, if p ⊥ q then there
are ã ∈ ξ (p), b̃ ∈ ξ (q) for which b̃ < ã′. Since a′

p = ∧ξ (p) < ã we know that
ã′ < ap, so b̃ < ap which implies ap ∈ ξ (q). Hence AO2 also holds and we have
proven the theorem. �

From the proof of this theorem one has the following corollary which we
shall need further on.

Corollary 1. Take an ortho state property system (�,L, ξ, ⊥̂) for which AO1
and AO2 are satisfied. Let ′ : L → L be the orthocomplementation described in
the theorem, then a′ = ∧a∈ξ (p)ap where the ap are given by AO2. Moreover every
property of (�,L, ξ, ⊥̂) is an orthoproperty.

5. EIGENCLOSURE AND ORTHOCLOSURE

The previous theorem describes the link between an ortho state property
system (�,L, ξ, ⊥̂) and an orthocomplementation ′ : L → L. In what follows
we’ll turn our attention toward the associated closure spaces: the eigenclosure and
the orthoclosure.

Theorem 3. Consider an ortho state property system (�,L, ξ, ⊥̂), then:

κ(L) = Corth ⇔ AO1 and AO2

Proof: Let A be closed in (�, Corth), i.e., A = A⊥⊥. By AO2 we know that
∀p ∈ A : ∃ap ∈ L : ap ∈ ξ (q) ⇔ q ⊥ p. We make a = ∧{ap|p ∈ A} and define
A∗ = κ(a). Then q ∈ A∗ is equivalent to q ∈ κ(∧{ap|p ∈ A}) = ∩p∈Aκ(ap). So
for any p ∈ A one has that q ∈ κ(ap), which means that ap ∈ ξ (q). Using (AO2)
we obtain that q ∈ A∗ is equivalent to p ⊥ q for every p ∈ A, so q ∈ A⊥⊥ Hence
A∗ = A⊥⊥ = κ(a) which is closed in (�, κ(L)). Conversely, if A is closed in
(�, κ(L)), there is an a ∈ L such that A = κ(a). Since a is an orthoproperty we
know that κ(a) = κ(a)⊥⊥ so A = A⊥⊥ is closed in (�, Corth).

Let p ∈ �. {p}⊥ ∈ Corth since {p}⊥⊥⊥ = {p}⊥ since κ(L) = Corth there is
a property a such that κ(a) = {p}⊥. For this a we have the following chain of
equivalences a ∈ ξ (q) ⇔ q ∈ κ(a) ⇔ q ∈ {p}⊥ ⇔ q ⊥ p. So for any p there
is an a = ap such that a ∈ ξ (q) ⇔ q ⊥ p, hence AO2 follows. Clearly T = L
is a generating set. Take a ∈ L then κ(a) ∈ κ(L) = Corth, so κ(a) = κ⊥⊥. By
Definition of Corth we know that κ(a)⊥ ∈ Corth = κ(L), so there is a b ∈ L such
that κ(b) = κ(a)⊥. By Proposition 5 we see that a is an orthoproperty, hence AO1
also holds. �
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Theorem 4. We have:

(C) If an ortho state property system (�,L, ξ, ⊥̂) satisfies AO1 and AO2 then
the closure space (�, κ(L)) is induced by the underlying ⊥-relation of
Proposition 1.

(D) If a closure space (�, C) is induced by a ⊥-relation then (�, C, ξ̄ , ⊥̂) is
an ortho state property system satisfying AO1 and AO2, where ⊥̂ is as in
Proposition 2.

Proof: (C): Follows from the previous Theorem 3 and Proposition 1.
(D): Let C be induced by an orthogonality relation ⊥. From Proposition 2

we know that (�, C, ξ̄ , ⊥̂) is an ortho state property system. Let us denote by ⊥∗ the
underlying ⊥-relation, i.e. p ⊥∗ q ⇔ ∃A,B ∈ C : A⊥̂B,p ∈ A, q ∈ B. Suppose
that p ⊥∗ q, then there are A,B ∈ C with p ∈ A and q ∈ B such that A⊥̂B. Hence
for any p̃ ∈ A and q̃ ∈ B we have that p̃ ⊥ q̃, so since p ∈ A and q ∈ B we get
that p ⊥ q. Conversely, if p ⊥ q, then we choose A = {p}⊥⊥ and B = {q}⊥⊥.
Obviously p ∈ A and q ∈ B, moreover if p̃ ∈ A and q̃ ∈ B then p̃ ⊥ r for any r

such that r ⊥ p. In particular for r = q we have p̃ ⊥ q, hence p̃ ∈ {q}⊥, so q̃ ⊥ p̃.
Thus A⊥̂B. Finally we have: ∃A,B ∈ C : A⊥̂B,p ∈ A, q ∈ B, so we conclude
that p ⊥∗ q. By the equivalence between closure spaces and state property systems
we know that κ(C) = C = Corth, hence by Theorem 3 we have that AO1 and AO2
are fulfilled. �

With the above results (A), (B), (C), and (D) we consider the following
scheme. We start with an ortho state property system (�,L, ξ, ⊥̂) satisfying
AO1 and AO2. First we use (A) to get a state property system (�,L, ξ ) and an
orthocomplementation ′ : L → L. Applying (B) we get a new ortho state prop-
erty system (�,L, ξ, ⊥̂∗

), which satisfies AO1 and AO2. On the other hand we
can apply (C) to the ortho state property system (�,L, ξ, ⊥̂), hence we get a
closure space (�, κ(L)) where κ(L) = Corth is induced by the orthogonality re-
lation ⊥ of (�,L, ξ, ⊥̂). Using (D) we get again an ortho state property system
(�, κ(L), ξ̄ , ⊥̂∗∗

), satisfying AO1 and AO2. We now ask ourselves what the rela-
tion is between those three ortho state property systems. First we note that by the
general equivalence between state property systems and closure spaces (�,L, ξ )
and (�, κ(L), ξ̄ ) can be considered as being the same (up to isomorphism). The
relation between ⊥̂∗

and ⊥̂∗∗
is given in the following theorem.

Theorem 5. With the above notations, we have κ(a)⊥̂∗∗
κ(b) ⇔ a⊥̂∗

b.

Proof: κ(a)⊥̂∗∗
κ(b) is equivalent to p ⊥ q,∀p, q such that a ∈ ξ (p) and b ∈

ξ (q). Thus, for any p such that a ∈ ξ (p), one has that b ∈ ξ (q) implies p ⊥ q.
By means of (AO2) it also implies b < ap, hence κ(a)⊥̂∗∗

κ(b) is equivalent to
b < ∧a∈ξ (p)ap = a′, which means that a⊥̂∗

b. �
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From this we know that (�,L, ξ, ⊥̂∗
) and (�, κ(L), ξ̄ , ⊥̂∗∗

) are essentially the
same. In order to compare (�,L, ξ, ⊥̂∗

) with the original ortho state property
system (�,L, ξ, ⊥̂) we need one more proposition.

Proposition 6. For any ortho state property system (�,L, ξ, ⊥̂) satisfying AO1
and AO2 we have a⊥̂b ⇒ b < a′.

Proof: a⊥̂b implies p ⊥ q,∀p, q such that a ∈ ξ (p)andb ∈ ξ (q). With the same
reasoning as in the previous proof one finds that it also implies b < a′. �

Theorem 6. ⊥̂∗
is the largest relation such that (�,L, ξ, ⊥̂∗

) is an ortho state
property system, satisfying AO1 and AO2, with the same orthocomplementation
′ : L → L as (�,L, ξ, ⊥̂).

Proof: Consider a relation ˜̂⊥ such that (�,L, ξ, ˜̂⊥) is an ortho state property
system, satisfying AO1 and AO2, with the same orthocomplementation ′ : L → L
as (�,L, ξ, ⊥̂). By the previous proposition we have a ˜̂⊥b which implies b < a′.
Therefore a⊥̂∗

b and thus ˜̂⊥ ⊂ ⊥̂∗
. �

To conclude we give an example showing that ⊥̂∗
can be strictly larger than ⊥̂.

Example 1. Consider a set of states � = {p, q, r, s, t, u} and the property lattice
L (see Fig. 1), with top 1̄ = 10 and bottom 0̄ = 1.

We define the map ξ by ξ (p) = {3, 6, 7, 9, 10}, ξ (q) = {2, 4, 5, 8, 10},
ξ (r) = {6, 9, 10}, ξ (s) = {5, 8, 10}, ξ (t) = {7, 9, 10}, ξ (u) = {4, 8, 10}. In this
way (�,L, ξ ) is a state property system. We endow it with the following relation:

⊥̂ = {(i, 1), (1, i)|1 ≤ i ≤ 10} ∪ {(7, 5), (5, 7), (4, 6), (6, 4)}

Fig. 1. The lattice L and the closure space κ(L).
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Hence we get an ortho state property system (�,L, ξ, ⊥̂). Since Corth = κ(L)
we have that both AO1 and AO2 are satisfied. We can now consider ⊥̂∗

. Since
κ(2) = {q}, κ(3) = {p} and p ⊥ q, we have that κ(2)⊥̂∗∗

κ(3), hence 2⊥̂∗
3. So ⊥̂∗

is strictly larger than ⊥̂. In fact it is given by:

⊥̂∗ = ⊥̂ ∪ {(3, 2), (2, 3), (4, 3), (3, 4), (3, 5), (2, 7),

(2, 6), (7, 2), (6, 2), (2, 9), (9, 2), (5, 3), (3, 8), (8, 3)}

REFERENCES

Aerts, D. (1981). The One and the Many: Towards a Unification of the Quantum and the Classical
Description of One and Many Physical Entities, Doctoral Thesis, Brussels Free University,
Brussels, Belgium.

Aerts, D. (1982). Description of many physical entities without the paradoxes encountered in quantum
mechanics. Foundations of Physics 12, 1131–1170.

Aerts, D. (1983). Classical theories and nonclassical theories as a special case of a more general theory.
Journal of Mathematical Physics 24, 2441–2453.

Aerts, D. (1999a). Foundations of quantum physics: A general realistic and operational approach.
International Journal of Theoretical Physics 38, 289–358.

Aerts, D. (1999b). Quantum mechanics: Structures, axioms, and paradoxes. In Quantum Mechanics
and the Nature of Reality, D. Aerts and J. Pykacz, eds., Kluwer Academic, Dordrecht, The
Netherlands, lanl archive ref and link: quant-ph/0106132.

Aerts, D., Colebunders, E., van der Voorde, A., and van Steirteghem, B. (1999). State property systems
and closure spaces: A study of categorical equivalence. International Journal of Theoretical
Physics 38, 359–385.

Aerts, D., Colebunders, E., van der Voorde, A., and van Steirteghem, B. (in press-a). The construct
of closure spaces as the amnestic modification of the physical theory of state property systems,
Applied Categorical Structures.

Aerts, D. and Deses, D. (2002). State property systems and closure spaces: Extracting the classical
and nonclassical parts. In Probing the Structure of Quantum Mechanics: Nonlinearity, Nonlo-
cality, Computation, and Axiomatics, D. Aerts, M. Czachor, and T. Durt, eds., World Scientific,
Singapore.

Aerts, D., van der Voorde, A., and Deses, D. (2001). Connectedness applied to closure spaces and state
property systems. Journal of Electrical Engineering 52, 18–21.

Aerts, D., van der Voorde, A., and Deses, D. (in press-b). Classicality and connectedness for state
property systems and closure spaces, International Journal of Theoretical Physics.

Piron, C. (1976). Foundations of Quantum Physics, W. A. Benjamin, Reading, MA.
Piron, C. (1989). Recent developments in quantum mechanics. Helvetica Physica Acta 62, 82.
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